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Abstract
We propose an algorithmic procedure (i) to study the ‘distance’ between an
integrable PDE and any discretization of it, in the small lattice spacing ε regime,
and, at the same time, (ii) to test the (asymptotic) integrability properties of such
discretization. This method should provide, in particular, useful and concrete
information on how good is any numerical scheme used to integrate a given
integrable PDE. The procedure, illustrated on a fairly general ten-parameter
family of discretizations of the nonlinear Schrödinger equation, consists of
the following three steps: (i) the construction of the continuous multiscale
expansion of a generic solution of the discrete system at all orders in ε, following
Degasperis et al (1997 Physica D 100 187–211); (ii) the application, to such an
expansion, of the Degasperis–Procesi (DP) integrability test (Degasperis A and
Procesi M 1999 Asymptotic integrability Symmetry and Perturbation Theory,
SPT98, ed A Degasperis and G Gaeta (Singapore: World Scientific) pp 23–37;
Degasperis A 2001 Multiscale expansion and integrability of dispersive wave
equations Lectures given at the Euro Summer School: ‘What is integrability?’
(Isaac Newton Institute, Cambridge, UK, 13–24 August); Integrability (Lecture
Notes in Physics vol 767) ed A Mikhailov (Berlin: Springer)), to test the
asymptotic integrability properties of the discrete system and its ‘distance’
from its continuous limit; (iii) the use of the main output of the DP test to
construct infinitely many approximate symmetries and constants of motion of
the discrete system, through novel and simple formulas.

PACS numbers: 02.30.Ik, 02.30.Jr, 02.30.Mv

1. Introduction

Given a partial differential equation (PDE) and a partial difference equation (P�E) discretizing
it, it is interesting to know, when the lattice spacing ε is small, ‘how close’ the two models
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are. In particular, if the PDE is integrable, it is important to have a way to establish if
such a discretization preserves integrability or, at least, how ‘close’ it is to an integrable
system, detecting the order, in ε, at which the discretization departs from integrability
and, correspondingly, the time scale at which one should expect numerical evidence of
nonintegrability and/or chaos. In addition, given a PDE and two P�Es discretizing it, it
is also interesting to know, when the lattice spacing ε is small, ‘how close’ the two P�Es are.

In this paper we propose to answer these basic questions in the following way.
Concentrating on an integrable PDE and on a P�E discretizing it,

(1) we construct and study in detail the multiscale expansion at all orders of a generic long-
wave solution of the P�E under scrutiny, generated in the small ε regime, following
the procedure developed in [1]. At O(1), the leading term u of such an asymptotic
expansion satisfies the integrable PDE; to keep the expansion asymptotic, we eliminate
the secularities due to the linear part of the P�E, arising at each order, introducing
infinitely many slow (time) variables and establishing that the evolution of u with respect
to such slow times is described by the infinite hierarchy of commuting flows of the
integrable PDE, as in [1];

(2) we make use of the asymptotic integrability test developed by Degasperis–Procesi (DP)
in [2, 3] on such a multiscale expansion to test, at all orders, the ‘asymptotic’ integrability
properties of the P�E; in particular, detecting the order in ε (and, correspondingly, the
time scale) at which the discretization departs from integrability. At this time scale,
for instance, numerical simulations are expected to give some evidence of nonintegrable
and/or chaotic behavior;

(3) we finally show how to make use of the main output of the DP test to construct infinitely
many ‘approximate’ symmetries, at a required order in ε, of the P�E under scrutiny,
using novel and simple formulas.

Recent studies on the performances, as numerical schemes for their continuous limits, of P�Es
possessing the same (continuous) Lie point symmetries as their continuous limits can be found
in [4–8]. Studies on the performances, as numerical schemes for their continuous limits, of
integrable discretizations of integrable PDEs can be found, for instance, in [9] and [10]; in this
case, the integrable discretization possesses infinitely many exact generalized symmetries and
constants of motion in involution at any order in ε, reducing to the generalized symmetries
and constants of motion of the integrable PDE in the continuous limit. The P�Es selected
by our approach possesses infinitely instead many approximate generalized symmetries and
constants of motion in involution at the required order in ε (see section 3.1), reducing to the
generalized symmetries and constants of motion of the integrable PDE in the continuous limit.

The procedure we propose should allow one to have a control on the ‘distance’ between
the P�E and its continuous limit, as well as the distance between two different discretizations
of the same PDE. Indeed, suppose we construct an asymptotic expansion of the form
ψ = u + O(εα), α > 0, where ψ is a generic long-wave solution of the P�E and u is
the corresponding solution of its continuous limit; if, at O(εβ), β > 0, the P�E passes the
DP test, we infer that ||ψ − u|| = O(εα) at time scales of O(ε−β), where || · || is the uniform
norm w.r.t x and t (the norm used to test the asymptotic character of the generated multiscale
expansion). In this way, since we control the distance between ‘generic long-wave solutions’
of the P�E and of its continuous limit, we also control the distance between the P�E and
its continuous limit. In addition, if the multiscale expansions of two different discretizations
of the same PDE pass the DP test at O(εβ), we infer, from the triangular inequality, that
||ψ − φ|| < ||ψ − u|| + ||φ − u|| = O(εα) at time scales of O(ε−β), where ψ, φ are long-
wave solutions of the two different discretizations of the PDE corresponding to the same
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initial-boundary data; therefore, we have a control also on the distance between the two
different discretizations of the same PDE.

Some historical remarks are important, at this point, on the theory of multiscale expansions
in connection with integrable systems to put the results of this paper into a proper perspective.
Multiscale expansions of a given PDE are very useful tools for investigating the properties of
such a PDE and for identifying important model (universal) equations of physical phenomena.
For instance, if the original nonlinear PDE has a dispersive linear part, a small amplitude
quasi-monochromatic wave evolving according to it develops a slow spacetime amplitude
modulation described by the celebrated nonlinear Schrödinger (NLS) equation [11–15] (see
also [16–18])

iut + uxx + 2c|u|2u = 0, u = u(x, t) ∈ C, (1)

integrable if c is a real constant [19]. Considering, instead, three monochromatic waves and
imposing a suitable resonance condition on their wave numbers and dispersion relations, one
generates another integrable universal model, the three-wave resonant system [20]. In the
above two examples, the expansion is constructed around ‘approximate’ particular solutions
of the original PDE (the monochromatic waves). It is also possible to expand around the
‘exact’ particular solutions of the original PDE; for instance, as shown in [21], expanding
around the exact solution u0 = exp(2ict) of (1), the first nontrivial term of the asymptotic
expansion evolves according to another important model equation: the Korteweg–de Vries
(KdV) equation [22], sharing with NLS the property of integrability [23]. Since multiscale
expansions preserve integrability [21], (i) if the original PDE is a ‘C-integrable’ system (i.e.
it is linearized by a ‘change of variables’ [18, 24], like the Burgers equations [25]), the
model equation generated by it is linear [18, 24]; (ii) if the original PDE is an ‘S-integrable’
system, or soliton equation (like the NLS equation), integrated in a more complicated way
via a Riemann–Hilbert or ∂̄-problem [26–29], the model equation generated by it is also
‘S-integrable’; and vice versa, (iii) if the model equation generated by the expansion is not
integrable, then the original equation is not integrable too (indeed, if it were integrable, the
integrability preserving multiscale expansion would generate an integrable model equation).
This criterion has been used in [18, 30–32] as a simple test of integrability. In addition, the
universal character of the identified model equations (NLS, KdV or others) is also the reason
why model equations possess very distinguished mathematical properties and, often, they are
integrable [18, 30, 24].

Multiscale expansions can also be carried, in principle, to all orders and, as a consequence
of eliminating the secular terms at each order, a sequence of slow time variables tn = εnt

must be introduced and the dependence of the leading term of the expansion on such slow
times is described by the hierarchy of commuting flows of the integrable model equation [1].
This multiscale expansion at all orders has been used in [2, 3] to build an efficient asymptotic
integrability test for the original PDE (see section 3 for more details on such a test). An
alternative asymptotic integrability test, based on the existence of approximate symmetries
for the original PDE, can be found in [33]. The ideas and procedures developed in [1–3]
have been recently used to build an integrability test also for P�Es [34–36]; in this approach,
one expands, as for the PDE case, around the approximate or exact particular solutions of the
P�E under investigation, obtaining a continuous multiscale expansion at all orders, following
[1], and applying on it the DP test. The main difference between the procedure followed in
[34–36] and the results of this paper is the following. The standard multiscale approach used
in [34–36], obtained expanding around approximate or exact particular solutions of the P�E
under investigation, cannot give information on how close this P�E and its continuous limit
are, the main goal of the present paper. The common features of the procedure in [34–36]
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and of that used in this paper are that, in both cases, one constructs, from the given P�E,
continuous multiscale expansions carried to all orders, as in [1], and one applies to them the
DP integrability test. Therefore, both procedures can be used to test the integrability and
the asymptotic integrability of the original P�E. A deeper comparison of the effectiveness
of these two procedures to test the integrability of a given P�E is postponed to a subsequent
paper.

Another integrability test for P�Es is the so-called symmetry approach [37], based on
the existence of higher order symmetries and originally developed to test the integrability of
PDEs [38, 39].

The results of this paper are illustrated on the basic prototype example of the NLS
equation (1), starting from the following discretization of it:

iψn,t + ε−2(ψn+1 + ψn−1 − 2ψn) + F(ψn−1, ψn, ψn+1) = 0,

F (ψn−1, ψn, ψn+1) := 2a1|ψn|2ψn + a2|ψn|2(ψn+1 + ψn−1)

+ a3ψ
2
n(ψ̄n+1 + ψ̄n−1) + a4ψn(|ψn+1|2 + |ψn−1|2)

+ a5ψn(ψ̄n+1ψn−1 + ψn+1ψ̄n−1) + a6ψ̄n(ψ
2
n+1 + ψ2

n−1)

+ 2a7ψ̄nψn+1ψn−1 + a8(|ψn+1|2ψn+1 + |ψn−1|2ψn−1)

+ a9(ψ
2
n+1ψ̄n−1 + ψ2

n−1ψ̄n+1) + a10(|ψn+1|2ψn−1 + |ψn−1|2ψn+1),

(2)

where the constant coefficients aj , j = 1, . . . , 10, are real, reducing to (1) in the natural
continuous limit in which the lattice spacing ε → 0 and nε → x ∈ R, ψn(t) → u(x, t), with

c =
10∑

j=1

aj . (3)

The ten-parameter family of equations (2) has recently been taken in [40] as the starting
point of an analysis devoted to the identification of discretizations of NLS that possess, at the
same time, a solitary wave and a breather solution reducing, respectively, to the one soliton
and breather solutions of the NLS equation (1), in the continuous limit ε → 0. We remark
that, rescaling the dependent variable, one can always introduce one normalization for the ten
coefficients; or for instance, choose one of these coefficients, say aj, to be sign(aj ) or, better
for our purposes, normalize the sum (3) of the ten coefficients to coincide with the prescribed
coefficient c of the NLS equation (1).

The linear part of the discrete NLS (dNLS) (2) is the standard discretization of (iut +uxx);
its nonlinear part is uniquely fixed by the following, physically sound, properties [40]. (a)
Equation (2) must possess the gauge symmetry of first kind (i.e. if ψn is a solution, ψne−iθ is a
solution too, where θ is an arbitrary real parameter), corresponding to the infinitesimal gauge
symmetry −iψn. (b) The nonlinearity is cubic; i.e. it is the weakest nonlinearity compatible
with the above gauge symmetry. (c) Only the first neighbor interactions are considered.
(d) Equation (2) is invariant under the symmetry transformation ψn±1 → ψn∓1 (space
isotropy).

The dNLS (2) contains, in particular,

(1) the integrable Ablowitz–Ladik (AL) equation [41]

iψn,t + ε−2 (ψn+1 + ψn−1 − 2ψn) + a2|ψn|2(ψn+1 + ψn−1) = 0, (4)

for aj = a2δj2, j = 1, . . . , 10;
(2) the discretization

iψn,t + ε−2 (ψn+1 + ψn−1 − 2ψn) + 2a1|ψn|2ψn = 0, (5)
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for aj = a1δj1, j = 1, . . . , 10, relevant in several applications [42–46] whose
nonintegrability has been recently shown in [34, 35] using the DP test;

(3) the discretization corresponding to

a10 = a8, a1 = a4 = a5 = a6 = a7 = a9 = 0, (6)

with a2, a3, a8 arbitrary, possessing a solitary wave as well as a breather solution reducing,
respectively, to the one soliton and breather solutions of the NLS equation in the limit
ε → 0 [40];

(4) the discretization corresponding to

a8 = a3, a2 = 2a3, a4 = 2a6, a5 = a7 = a9 = a10 = 0, (7)

where a1, a3, a6 are given in terms of physical quantities, describing coupled optical
waveguides embedded in a material with Kerr nonlinearities [47];

(5) the discretization corresponding to

a4 = a2, a1 = a3 = a6 = a8 = a2/2, a5 = a7 = a9 = a10 = 0 (8)

(a particular case of (7)), appearing in the modeling of the Fermi–Pasta–Ulam problem
[48].

For special values of the coefficients aj the dNLS equation (2) is Hamiltonian. For instance,
equations (4), (5), (7) and (8) are Hamiltonian [47].

If 0 < ε � 1, the discrete scheme (2) approximates the NLS equation (1), (3) with an
error of O(ε2). To study more precisely how close equations (2) and (1) are and, in particular,
the integrability properties of (2), in this paper we follow the procedure indicated in the first
part of this introduction, obtaining the following results.

(1) Due to the structure of the vector field in (2), the generated ε-expansion contains only
even powers. At O(ε2), the dNLS (2) passes the DP test iff the ten coefficients satisfy the
elegant quadratic constraint

(a1 − 3a3 − 2a4 − 6a5 − 5a6 + 3a7 − 5a8 − 13a9 − a10)

⎛
⎝ 10∑

j=1

aj

⎞
⎠ = 0, (9)

factorized into two linear constraints. If the first constraint
10∑

j=1
aj = 0 is satisfied, we are

in the C-integrability framework and the dNLS (2) approximates the linear Schrödinger
(LS) equation with an error of O(ε2), for time scales of O(ε−2). If, instead, the second
constraint is satisfied:

a1 − 3a3 − 2a4 − 6a5 − 5a6 + 3a7 − 5a8 − 13a9 − a10 = 0, (10)

we are in the S-integrability framework and the dNLS (2) approximates the NLS
equation (1), (3) with an error of O(ε2), for time scales of O(ε−2).
We remark that, among the ten single dNLS equations obtained choosing only one of the
ten coefficients different from zero in (2), only the AL equation (4) satisfies the constraint
(9) and passes the test at O(ε2).

(2) At O(ε4) we have the following two scenarios. In the C-integrability framework, the
dNLS (2) approximates, with an error of O(ε2), the linear Schrödinger equation for time
scales of O(ε−4) iff the four linear constraints

10∑
j=1

aj = 0, a1 + a2 + a6 + a7 = 0, a4 − a5 + 2a8 − 2a9 = 0,

a2 + 2(a3 + 3a5 + 3a6 − a7 + a8 + 7a9) = 0

(11)
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are satisfied by the coefficients. Since one of the real aj can always be fixed rescaling
the dependent variable ψ , equations (11) characterize a five-parameter family of discrete
NLS equations (2) passing the test at such a high order.

In the S-integrability framework, the dNLS (2) approximates, with an error of O(ε2), the NLS
equation (1), (3) for time scales of O(ε−4) iff the coefficients satisfy, together with the linear
constraint (10), the five quadratic constraints (53), (54)–(58). Since these five constraints
do not contain the term (a2)

2, they are trivially satisfied by the integrable AL equation (4),
as it has to be. In general we do not expect a parametrization of such constraints in terms
of elementary functions; however, we have been able to construct the following two explicit
examples of dNLS equations:

iψn,t + ε−2(ψn+1 + ψn−1 − 2ψn) + a6
( − 8|ψn|2ψn + 4

3 |ψn|2(ψn+1 + ψn−1)

+ 4ψ2
n(ψ̄n+1 + ψ̄n−1) − 4ψn(ψ̄n+1ψn−1 + ψn+1ψ̄n−1) + ψ̄n(ψ

2
n+1 + ψ2

n−1)

− 2ψ̄nψn+1ψn−1
) = 0,

(12)

iψn,t + ε−2(ψn+1 + ψn−1 − 2ψn) + a9
( − 48|ψn|2ψn − 8ψn(|ψn+1|2

+ |ψn−1|2) − 8ψn(ψ̄n+1ψn−1 + ψn+1ψ̄n−1) + 10ψ̄n(ψ
2
n+1 + ψ2

n−1)

− 4ψ̄nψn+1ψn−1 − 7(|ψn+1|2ψn+1 + |ψn−1|2ψn−1)

+ (ψ2
n+1ψ̄n−1 + ψ2

n−1ψ̄n+1) + 6(|ψn+1|2ψn−1 + |ψn−1|2ψn+1)
) = 0,

(13)

satisfying such complicated quadratic constraints, corresponding to particular cases in which
the associated five quadrics degenerate into hyperplanes.

These two distinguished models, passing the test at such a high order through the above
degeneration mechanism, are obviously good candidates to be the S-integrable discretizations
of NLS. A detailed study of their performances as numerical schemes for NLS, and of their
possible integrability structure (Lax pair, etc), is postponed to a subsequent paper.

To obtain the above results, it is essential to use the well-known integrability properties of
equation (1) (shared by all integrable systems; see, for instance [49–52]) that we summarize
here, for completeness.

The NLS equation belongs to a hierarchy of infinitely many commuting flows:

utn = Kn(u), n ∈ N, (14)

i.e.

[Kn(u),Km(u)]L := K ′
n(u)[Km(u)] − K ′

m(u)[Kn(u)] = 0, n,m ∈ N, (15)

where

K ′
n(u)[f ] = lim

ε→0

∂Kn

∂ε
(u + εf ) (16)

is the usual Frechet derivative of Kn(u) w.r.t u in the direction f . The commuting vector fields
{Kn}n∈N are arbitrary linear combinations, with constant coefficients, of the following basic
symmetries {σn}n∈N, generated by the recursion relation:

σn+1 = R̂σn, σ0 = −iu, n ∈ N,

R̂f := i
(
fx + 2cu∂−1

x (uf̄ + ūf )
)
,

(17)
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where R̂ is the recursion operator of the NLS hierarchy [53]. The basic symmetries used in
this paper are

σ0 = −iu, σ2 = i(uxx + 2c|u|2u),

σ4 = −i
(
uxxxx + 2c(u2ūxx + 2u|ux |2 + 4|u|2uxx + 3u2

xū) + 6c2|u|4u)
,

σ6 = i
(
uxxxxxx + 2c(u2ūxxxx + 6|u|2uxxxx + 4uuxūxxx + 9uūxuxxx

+ 15ūuxuxxx + 11u|uxx |2 + 10u2
xūxx) + 10c2(2u2|u|2ūxx + 2ūu2

xx

+ 5|ux |2uxx + 5|u|4uxx + u3ū2
x + 6u|u|2|ux |2 + 7ū|u|2u2

x) + 20c3u|u|6),

(18)

and the NLS equation (1) corresponds to the flow ut2 = K2(u) = σ2(u).
Equivalently, the basic symmetries {σn}n∈N are elements of the kernel of the ‘linearized’

nth flow operator M̂n, n ∈ N, defined by

M̂nf := ftn − K ′
n(u)[f ]; (19)

i.e.

M̂nσm = 0, n,m ∈ N. (20)

Due to (15), these linearized operators commute:

M̂nM̂m = M̂mM̂n, n,m ∈ N. (21)

The linearized operators used in this paper are

M̂2f := ft2 − i
(
fxx + 2c(u2f̄ + 2|u|2f )

)
,

M̂4f := ft4 − i
12

[
fxxxx + 2c(ū(6uxfx + 4ufxx) + u(2uxf̄ x + 2ūxfx

+ uf̄ xx) + (6c|u|2u2 + 3u2
x + 4uuxx)f̄ + (9c|u|4 + 2|ux |2 + 4ūuxx

+ 2uūxx)f )
]
,

M̂6f := ft6 − i
360

[
fxxxxxx + 2c(10cu3(ūx f̄ x + ūf̄ xx) + 5(2u2

xf̄ xx

+ 4ūuxxfxx + ux(5ūxfxx + 5uxxf̄ x + 4ūxxfx + 3ūfxxx) + (5ūxuxx

+ 3ūuxxx)fx)) + u(70cū2uxfx + 11uxxf̄ xx + 11fxxūxx + 9ūxfxxx

+ 4uxf̄ xxx + 9uxxxf̄ x + 6ūfxxxx) + u2(5cū(6f̄ xux + 6fxūx + 5ūfxx)

+ f̄ xxxx) + f̄ (30c2|u|4u2 + 10cu2(3|ux |2 + 5ūuxx) + 10cu3ūxx

+ 5(2u2
xx + 3uxuxxx) + u(70cūu2

x + 6uxxxx)) + f (40c2|u|6 + 35cū2u2
x

+ 11|uxx |2 + 15cu2(ū2
x + 2ūūxx) + 9ūxuxxx + 4uxūxxx + 6ūuxxxx

+ 2u(5cū(6|ux |2 + 5ūuxx) + ūxxxx)))
]
.

(22)

At last, if c = 0, equations (1) and (17) lead to the LS equation

iut + uxx = 0 (23)

and to its (trivial) symmetries (−in+1∂n
x u).

The paper is organized as follows. In section 2 we construct the multiscale expansion,
in the small ε regime, of a generic solution of (2), establishing, in particular, that the
leading term of such an expansion evolves w.r.t the infinitely many ‘even’ time variables
t2k := ε2(k−1)t, k ∈ N+, according to the even flows of the NLS hierarchy. In section 3,
after summarizing the DP test and after showing how to use the main output of this test
to construct infinitely many approximate symmetries of the original P�E through novel
and simple formulas, we apply the DP test to the P�E (2), isolating the constraints on the
coefficients aj , j = 1, . . . , 10, allowing one to pass the test at time scales of O(ε−2) and of

7
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O(ε−4), in both scenarios of C- and S-integrability. In section 4 we summarize the results of
the paper and we discuss the research perspectives opened by this work. In the appendix we
display the long outputs of the DP test, obtained using the algebraic manipulation program of
Mathematica.

2. Multiscale expansion in the small lattice spacing regime

If the lattice spacing ε is small: 0 < ε � 1, as a consequence of the invariance of (2) under
the transformation ψn±1 → ψn∓1 and of the well-known formula

fn±1 =
∞∑

k=0

(±1)k

k!
εk∂k

xf, (24)

valid in the long-wave approximation, only even x-derivatives appear at all (even) orders
in ε, implying that also the asymptotic expansion of ψn contains only even powers of ε.
Consequently, to eliminate the secularities appearing at all even orders in ε, the coefficients of
such an expansion must depend on infinitely many ‘even’ slow times [1]:

�t = (t2, t4, t6, . . .), t2k := ε2(k−1)t, k ∈ N+, (25)

implying that

∂t → ∂t2 + ε2∂t4 + ε4∂t6 + · · · . (26)

Therefore, we are led to the following ansatz for the asymptotic expansion of the ‘generic’
solution of (2):

ψn(t) =
∞∑

k=0

ε2ku(2k+1)(x,�t), u(1)(x,�t) = u(x,�t). (27)

Plugging (24), (26) and (27) into equation (2) and equating to zero the coefficients of all
powers in ε, we obtain the following results.

At the leading O(1), we obtain the NLS equation for the leading term u(1) = u w.r.t the
first time t2 = t :

ut2 = K2(u),

K2(u) := σ2(u) = i(uxx + 2c|u|2u), c =
10∑

j=1

aj .
(28)

As usual in perturbation theory, at the next relevant order (O(ε2) in our case), the ‘linearization’
M̂2u

(3) of (ut2 − K2(u)) appears, together with the linear term (ut4 − (i/12)uxxxx), coming
from the linear part of (2), and with a nonlinear term G5 coming from the nonlinear part of (2):

M̂2u
(3) = −

(
ut4 − i

2

4!
uxxxx

)
+ G5, (29)

where

G5 = i
(
s1u

2ūxx + s2|u|2uxx + s3u|ux |2 + s4ūu2
x

)
,

s1 = a3 + a4 + a5 + a8 + a9 + a10,

s2 = a2 + a4 + a5 + 2(a6 + a7 + a8 + a9 + a10),

s3 = 2(a4 − a5 + 2a8 − 2a9), s4 = 2(a6 − a7 + a8 + a9 − a10).

(30)

Concentrating on the linear terms in the round bracket, we observe that ut4 ∈ KerM̂2 and
(−(i/12)uxxxx) is the linear part of the symmetry (2/4!)σ4(u) ∈ KerM̂2. Therefore, adding and

8
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subtracting the symmetry (2/4!)σ4, equation (29) is conveniently rearranged in the following
way, isolating the resonant terms in the round bracket:

M̂2u
(3) = −

(
ut4 +

2

4!
σ4(u)

)
+ g5, (31)

where

g5 := i(c1|u|4u + c2ūux
2 + c3u|ux |2 + c4|u|2uxx + c5u

2ūxx) (32)

and

c1 = − 1
2c2,

c2 = − 1
2 (a1 + a2 + a3 + a4 + a5 − 3a6 + 5a7 − 3a8 − 3a9 + 5a10),

c3 = − 1
3 (a1 + a2 + a3 − 5a4 + 7a5 + a6 + a7 − 11a8 + 13a9 + a10),

c4 = − 1
3 [2a1 − a2 + 2a3 − a4 − a5 − 4(a6 + a7 + a8 + a9 + a10)],

c5 = − 1
6 [a1 + a2 + a6 + a7 − 5(a3 + a4 + a5 + a8 + a9 + a10)].

(33)

To eliminate the secularity in the bracket, we are forced to choose

ut4 = K4(u) := − 2

4!
σ4(u), (34)

so (31) finally becomes the following secularity free equation for the first correction u(3):

M̂2u
(3) = g5. (35)

This procedure iterates without essential differences at all orders. The terms M̂2u
(3) and

(ut4 − K4(u)) in (31) generate, at O(ε4), the terms M̂2u
(5) and M̂4u

(3) respectively, while the
new linear term (ut6 −i(2/6!)uxxxxxx) is rearranged again into the secular factor (ut6 −(2/6!)σ6)

that must be set to zero, to avoid secularities. Since, at O(ε2k), we produce the linear term(
ut2k

− i 2
(2k)!∂

2k
x u

)
, one infers, in analogy with [1], that u evolves w.r.t the higher times

according to the even flows of the NLS hierarchy as follows:

ut2k
= K2k(u) := (−1)k+1 2

(2k)!
σ2k(u), k ∈ N+, (36)

and one is left with the following triangular set of equations [2, 3]:

O(ε2) : M̂2u
(3) = g5,

O(ε4) : M̂2u
(5) + M̂4u

(3) = g7,

O(ε6) : M̂2u
(7) + M̂4u

(5) + M̂6u
(3) = g9,

...
...

O(ε2k) : M̂2u
(2k+1) + M̂4u

(2k−1) + · · · + M̂2ku
(3) = g2k+3,

...
...

(37)

where, for instance, the expression of g7 is presented in formula (A.1) of the appendix. It
remains to remark, following [2, 3], that the symmetries {σn} and the expressions in (37),
generated by the multiscale expansion, are differential polynomials satisfying the following
properties: (i) they are linear combinations of products of the u(k)’s and of their derivatives
with respect to x: ∂

j
x u(k), j � 0, k odd; (ii) they possess the gauge symmetry of first kind.

In addition, the differential polynomials appearing in the same equations exhibit the same
‘order’, in the following sense.

9
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Definition 1. If we define the order of the term ∂
j
x u(k), j � 0, as follows:

order (∂j
x u(k)) = order (∂j

x u(k)) = j + k, (38)

then the order of the product of terms of this type is the sum of the orders of each term.

For example, order(∂j
x u) = j + 1 (since u = u(1)) and order(|u(k1)|2∂j

x u(k2)) = 2k1 +
j + k2. Therefore, we are naturally led to the definition of the following vector spaces.

Definition 2. Pn is the vector space of all the differential polynomials satisfying properties (i)
and (ii) above, of order n. Pn(m) is instead the subspace of Pn of all differential polynomials
satisfying properties (i) and (ii) above and containing only terms (∂

j
x u(k)), (∂

j
x u(k)) such that

k � m.

Is is easy to see that, for instance, σn,Kn ∈ Pn+1(1), g5 ∈ P5(1) and g7 ∈ P7(3)

(see (A.1)).

3. Applying the DP integrability test

Suppose we generate, from the model to be tested, an NLS-type multiscale expansion (as in our
example); then we have the following scenarios. If such a model is S-integrable (C-integrable),

(1) the leading term u of the asymptotic expansion evolves, with respect to the slow times tn,
according to the NLS (LS) hierarchy [1];

(2) there exist elements f (m)
n ∈ Pn+m such that the following equations hold [2, 3]:

M̂nu
(m) = f (m)

n ∈ Pm+n, m, n ∈ N+, (39)

implying, due to (21), the compatibility conditions

M̂nf
(j)
m = M̂mf (j)

n , m, n, j ∈ N+. (40)

Therefore, equations (40) are necessary conditions to be satisfied, in cascade, for the model
under investigation to be S- (C-)integrable; they are also sufficient to guaranty the asymptotic
character of the expansion. If equations (40) are satisfied only up to a certain order, the model
under investigation is not integrable, being nevertheless ‘asymptotically integrable up to that
order’ [2, 3].

3.1. The DP test and approximate symmetries

Equations (39) and (40), the basic formulas of the DP test, have been derived in [2, 3] as a
consequence of the existence of a Lax pair for the starting integrable model. It follows that if
conditions (39) and (40) are satisfied up to a certain order, the equation under scrutiny admits
an approximate Lax pair up to that order.

In this subsection we show how to derive conditions (39) and (40) from the existence of
infinitely many symmetries of the starting integrable model. This derivation allows one to
establish the important relations (to the best of our knowledge so far unknown) between the
functions f (m)

n ∈ Pm+n of the DP test and the symmetries of the starting model. We concentrate
our attention on the case of difference equations, but our considerations have general validity.

Let ψnt2
= K2(ψn) be an integrable model, say, the AL equation (4), and let

ψnt2m
= K2m(ψn),m > 2, be one of its infinitely many higher order commuting flows

(symmetries), reducing, in the continuous limit, to the higher commuting flow ut2m
= K2m(u)

of NLS.

10
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On one hand, from equations (25) and (27), we have that

ψnt2m
= ut2m

+ ε2(ut2(m+1)
+ u

(3)
t2m

) + . . . =
∑
k�0

ε2k

⎛
⎝m+k∑

j=m

u
(2(m+k−j)+1)
t2j

⎞
⎠ , (41)

where ut2m
= K2m(u) (from (36)) and u

(2(m+k−j)+1)
t2j

= K ′
2j [u(2(m+k−j)+1)] + f

(2(m+k−j)+1)

2j , for

some functions f
(2(m+k−j)+1)

2j to be specified. On the other hand,

K2m(ψn) = K2m(u) + ε2K
(2)
2m + . . . = K2m(u) +

∑
k�1

ε2kK
(2k)
2m , (42)

where K
(2k)
2m ∈ P2(m+k)+1. Equating equations (41) and (42), we infer that f (m)

n ∈ Pm+n,m, n ∈
N+ (the basic formula (39) of the DP test), and we also construct the asymptotic expansion of
the generic higher order symmetry

K2m(ψn) = K2m(u) + ε2
(
K2(m+1)(u) + K ′

2m[u(3)] + f
(3)
2m

)
+ . . .

=
∑
k�0

ε2k

⎛
⎝m+k−1∑

j=m

(
K ′

2j [u(2(m+k−j)+1] + f
(2(m+k−j)+1)

2j

)
+ K2(m+k)(u)

⎞
⎠ (43)

in terms of the NLS higher order symmetries, of their Frechet derivatives in the direction of the
corrections u(j), j > 1, of the leading term u of expansion (27), and of the output functions
f (m)

n ∈ Pm+n of the DP test.
Therefore, if f

(2k+1)
2n ∈ P2(k+n)+1 exists, but f

(2k+3)
2n ∈ P2(k+n)+3 does not, ∀n ∈ N+, it

follows that

(i) the solution u(2k+1) of (39) is uniformly bounded and expansion (27) is asymptotic up to
O(ε2k); therefore, the P�E under scrutiny approximates well its continuous limit, with
an error of O(ε2), for time scales up to O(ε−2k).

(ii) The P�E possesses infinitely many ‘approximate’ generalized symmetries in the form
(43) up to O(ε2k); therefore, it is integrable up to that order. We remark that, due to the
Hamiltonian theory of integrable systems [49–52], it is also possible to associate with
the P�E infinitely many ‘approximate’ constants of motion in involution, a very useful
information in a any numerical check.

3.2. C- and S-integrability at O(ε2)

In our example, the first of equations (37) is already in the form (39), with g5 = f
(3)
2 ∈ P5(1).

Assuming now that M̂4u
(3) = f

(3)
4 , we arrive at the consistency

M̂4f
(3)
2 = M̂2f

(3)
4 (44)

that must be viewed as an equation for the unknown f
(3)
4 . Since g5 = f

(3)
2 ∈ P5(1), it follows

that one must look for f
(3)
4 ∈ P7(1). The calculation, plain but lengthy, has been performed

using the algebraic manipulation program of Mathematica, and gives the following result.

Lemma 1. Equation (44) admits a unique solution f
(3)
4 ∈ P7(1) (presented in formula

(A.4) of the appendix) iff the coefficients aj’s appearing in (2) satisfy the following quadratic
constraint:

(a1 − 3a3 − 2a4 − 6a5 − 5a6 + 3a7 − 5a8 − 13a9 − a10)

⎛
⎝ 10∑

j=1

aj

⎞
⎠ = 0. (45)

11
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Once f
(3)
4 is constructed, f

(5)
2 ∈ P7(3) (f (5)

2 = M̂2u
(5)) is found from the second of

equations (37):

f
(5)
2 = g7 − f

(3)
4 (46)

and is presented in formula (A.7) of the appendix.

We first note the nice factorization of the quadratic constraint (45) into two linear
constraints:

c =
10∑

j=1

aj = 0, (47)

a1 − 3a3 − 2a4 − 6a5 − 5a6 + 3a7 − 5a8 − 13a9 − a10 = 0. (48)

Therefore, we have the following two different scenarios.

(1) If the first constraint (47) is satisfied by the coefficients aj, the continuous limits of dNLS
(2) are the LS equation. It follows that, in this case, equation (2) is ‘asymptotically
C-integrable’ at O(ε2) and one expects that, for generic initial data and at time scales
of O(ε−2), the dynamics according to (2), (47) be well approximated by the dynamics
according to the LS equation (23) with an error of O(ε2).
In particular, the dNLS (2), (7) is ‘asymptotically C-integrable’ at O(ε2) iff

a1 + 4a3 + 3a6 = 0. (49)

(2) If, instead, the second constraint (48) is satisfied by the coefficients aj, the dNLS
equation (2) is ‘asymptotically S-integrable’ at O(ε2) and one expects that, for generic
initial data and at time scales of O(ε−2), the dynamics according to the dNLS
equation (2), (48) approximates well the dynamics according to the NLS equation (1), (3)
with an error of O(ε2).

In particular, (i) the dNLS (2), (6) is ‘asymptotically S-integrable’ at O(ε2) iff the following
additional constraint is satisfied:

a3 + 2a8 = 0; (50)

(ii) the dNLS (2), (7) is ‘asymptotically S-integrable’ at O(ε2) iff the following additional
constraint is satisfied:

a1 − 8a3 − 9a6 = 0, (51)

while the dNLS (2), (8) is not ‘asymptotically S-integrable’ at O(ε2) (therefore, it is not
integrable).

In addition, since the dNLS equation (2) is the linear combination of ten different
discretizations of NLS, it is immediate to check if some of these ten discretizations satisfy
the constraint (48). Calling dNLSk the single discretization of NLS obtained choosing in (2)
aj = akδjk, j = 1, . . . , 10, it is straightforward to see (since the coefficient a2 is the only one
absent in (48)) that only the dNLS2 equation (coinciding with the AL equation (4)) satisfies
the constraint (48) (as it has to be, being an integrable system). All the other dNLSk, k 
= 2
equations, including the dNLS1 equation (5), do not satisfy the constraint (48); therefore,
they are not ‘asymptotically S-integrable’ at O(ε2) (consequently, they are not integrable)
and, for generic initial data and at time scales of O(ε−2), their dynamics are expected to
be quite different from that of NLS (1), (3), presumably exhibiting numerical evidence of
nonintegrability and/or chaos.

We finally infer that the discretizations (2), (6) and (2), (7) satisfying respectively the
constraints (50) and (51), the AL equation and any other dNLS equation (2) satisfying the

12
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constraint (48) are all close to NLS (once the free coefficients of each model are normalized
to satisfy (3)) and are all close together at time scales of O(ε−2), in the sense mentioned in
the introduction.

It is interesting to push the integrability test to the next order which we will present here.
Due to the above factorization of the constraint (45), the test bifurcates and, in the next two
subsections, we explore both cases. Before doing that, we observe that, given f

(3)
2 ∈ P5(1)

and assuming that the constraint (45) be satisfied, the equation M̂6f
(3)
2 = M̂2f

(3)
6 admits a

unique solution f
(3)
6 = M̂6u

(3) ∈ P9(1), presented in formula (A.10) of the appendix, and no
additional constraint appears in this derivation, as predicted by the DP test.

3.3. C-integrability at O(ε4)

Let us assume that the constraint (47) be satisfied. For the construction of f
(5)
4 = M̂4u

(5) ∈
P9(3) from the equation

M̂4f
(5)
2 = M̂2f

(5)
4 (52)

we have the following result.

Lemma 2. Equation (52) admits a unique solution f
(5)
4 ∈ P9(3), presented in formula

(A.13) of the appendix, iff the coefficients aj satisfy the four linear constraints (11), defining
a six-parameter family (but one of these parameters can always be rescaled away) of dNLS
equations (2) ‘asymptotically C-integrable’ at O(ε4). Therefore, one expects that, for generic
initial data and at time scales of O(ε−4), the dynamics according to (2), (11) well approximate
the dynamics according to the LS equation (23) with an error of O(ε2).

For instance, the discretization (2), (7) satisfies the constraints (11) iff a6 = −a3 = a1.
The six-parameter family of dNLS equations (2), (11) (or at least some particular case

of it), being C-integrable at such a high order, is a natural candidate to be a C-integrable
discrete system.

3.4. S-integrability at O(ε4)

Let us assume that the constraint (48) be satisfied. For the construction of a unique
f

(5)
4 = M̂4u

(5) ∈ P9(3) from equation (52), we have the following result.

Lemma 3. If the constraint (48) is satisfied, equation (52) admits a unique solution
f

(5)
4 ∈ P9(3), presented in formula (A.13) of the appendix, iff the following five quadratic

constraints are satisfied:

Qj = 0, j = 1, . . . , 5, (53)

where the Qj’s are the following quadratic forms in the nine variables a2, . . . , a10:

Q1 = −4a2
10 + a10a2 + 2a10a3 − a2a3 + 2a2

3 − a10a4 − 2a2a4 + a3a4

+ 3a10a5 − 2a2a5 − 3a3a5 − 8a4a5 − 8a2
5 + 18a10a6 + 6a3a6 − 6a10a7

+ 4a2a7 + 6a3a7 + 4a4a7 + 20a5a7 + 24a6a7 − 8a2
7 + 12a10a8 − 3a2a8

+ 6a3a8 + 3a4a8 − 9a5a8 − 6a6a8 + 18a7a8 + 20a10a9 − 3a2a9 − 2a3a9

− 13a4a9 − 25a5a9 − 6a6a9 + 50a7a9 − 24a8a9 − 24a2
9,

(54)
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Q2 = 14a2
10 + 6a10a2 + 44a10a3 + 4a2a3 + 26a2

3 + 36a10a4 + 5a2a4

+ 40a3a4 + 17a2
4 + 72a10a5 + 7a2a5 + 88a3a5 + 68a4a5 + 75a2

5

+ 64a10a6 + 10a2a6 + 72a3a6 + 60a4a6 + 128a5a6 + 60a2
6 − 24a10a7

− 2a2a7 − 24a3a7 − 16a4a7 − 44a5a7 − 32a6a7 + 4a2
7 + 64a10a8 + 8a2a8

+ 60a3a8 + 54a4a8 + 106a5a8 + 100a6a8 − 20a7a8 + 42a2
8 + 168a10a9

+ 28a2a9 + 220a3a9 + 170a4a9 + 382a5a9 + 332a6a9 − 108a7a9

+ 284a8a9 + 466a2
9,

(55)

Q3 = 20a2
10 + 15a10a2 + 38a10a3 − 5a2a3 − 22a2

3 + 39a10a4 − a2a4

− 23a3a4 − a2
4 + 63a10a5 − 11a2a5 − 83a3a5 − 52a4a5 − 75a2

5

+ 70a10a6 − 14a2a6 − 78a3a6 − 48a4a6 − 148a5a6 − 84a2
6 − 18a10a7

+ 10a2a7 + 42a3a7 + 32a4a7 + 76a5a7 + 88a6a7 − 20a2
7 + 88a10a8

− 7a2a8 − 54a3a8 − 15a4a8 − 119a5a8 − 134a6a8 + 82a7a8 − 36a2
8

+ 72a10a9 − 59a2a9 − 302a3a9 − 211a4a9 − 539a5a9 − 526a6a9 + 234a7a9

− 472a8a9 − 788a2
9,

(56)

Q4 = −32a2
10 − 24a10a2 − 56a10a3 + 6a2a3 + 36a2

3 − 70a10a4 − a2a4

+ 30a3a4 + a2
4 − 114a10a5 + a2a5 + 78a3a5 + 20a4a5 + 27a2

5 − 120a10a6

+ 14a2a6 + 88a3a6 + 48a4a6 + 84a5a6 + 84a2
6 + 24a10a7 − 14a2a7 − 64a3a7

− 52a4a7 − 80a5a7 − 112a6a7 + 28a2
7 − 164a10a8 + 2a2a8 + 48a3a8 + 12a4a8

+ 16a5a8 + 124a6a8 − 116a7a8 + 36a2
8 − 220a10a9 + 22a2a9 + 208a3a9 + 96a4a9

+ 196a5a9 + 292a6a9 − 204a7a9 + 176a8a9 + 300a2
9,

(57)

Q5 = 4a2
10 + 3a10a2 − 2a10a3 − a2a3 − 14a2

3 + 3a10a4 − a2a4 − 19a3a4

− 5a2
4 − 5a10a5 − 3a2a5 − 47a3a5 − 36a4a5 − 39a2

5 − 2a10a6 − 6a2a6

− 38a3a6 − 32a4a6 − 68a5a6 − 36a2
6 + 6a10a7 + 2a2a7 + 18a3a7 + 16a4a7

+ 28a5a7 + 24a6a7 − 4a2
7 + 8a10a8 − 3a2a8 − 30a3a8 − 19a4a8 − 59a5a8

− 62a6a8 + 26a7a8 − 20a2
8 − 40a10a9 − 23a2a9 − 150a3a9 − 119a4a9 − 255a5a9

− 230a6a9 + 82a7a9 − 216a8a9 − 356a2
9 .

(58)

The five homogeneous quadratic constraints (53), (54)–(58) for nine unknowns, characterizing
the intersection of five quadrics in the real projective space of dimension 8, define, in principle,
a four-parameter family of solutions (but one of these parameters can always be rescaled away)
whose parametrization does not appear to be expressible, in general, in terms of elementary
functions. The corresponding dNLS equation (2) is asymptotically S-integrable at O(ε4) and
should well approximate the NLS equation for times up to O(ε−4).

We observe that, in all these quadratic constraints, a2 is the only coefficient appearing
always multiplied by other coefficients (the term (a2)

2 is absent); therefore, the choice

aj = a2δj2, j = 1, . . . , 10, (59)

corresponding to the AL equation (4) satisfies all constraints, as it has to be. Other less trivial
explicit solutions of (48), (53), (54)–(58) can also be constructed, corresponding to the case
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in which all quadrics degenerate into pairs of hyperplanes. Here we display the following two
examples:

a1 = −4a6, a2 = 4a6
3 , a3 = 4a6, a4 = 0,

a5 = −4a6, a7 = −a6, a8 = a9 = a10 = 0,
(60)

a1 = −24a9, a2 = a3 = 0, a4 = a5 = −8a9,

a6 = 10a9, a7 = −2a9, a8 = −7a9, a10 = 6a9,
(61)

corresponding, respectively, to the dNLS equations (12) and (13) presented in the introduction,
‘asymptotically S-integrable’ at O(ε4). Therefore, one expects that, for generic initial data
and at time scales of O(ε−4), the dynamics according to equations (12) and (13) are good
approximations of the dynamics according to the NLS equation (1), with an error of O(ε2),
at time scales of O(ε−4). Of course, these distinguished equations, passing the test at such a
high order, are also good candidates to be S-integrable difference equations.

We finally observe that there is no choice of parameters for which the dNLS equations
(2), (6), (50) and (2), (7), (51) satisfy the above constraints; therefore, these two models are
not S-integrable at this order (they are not S-integrable at all) and do not approximate well
NLS at time scales of O(ε−4).

4. Summary of the results and future perspectives

In this paper we have proposed an algorithmic procedure allowing one (i) to study the distance
between an integrable PDE and any P�E discretizing it, in the small lattice spacing ε regime;
(ii) to test the (asymptotic) integrability properties of such a P�E; and (iii) to construct infinitely
many (approximate) symmetries and conserved quantities for it. This method should provide,
in particular, useful and concrete information on how good is a numerical scheme used to
integrate a given integrable PDE.

The procedure we have proposed, illustrated on the basic prototype example of the
nonlinear Schrödinger equation (1) and of its discretization (2), consists of the following three
steps: (i) the construction of the multiscale expansion of a generic long-wave solution of the
dNLS (2) at all orders in ε, following [1]; (ii) the application, to such an expansion, of the DP
integrability test [2, 3]; (iii) the use of the main output of such a test to construct infinitely
many approximate symmetries of the dNLS equation (2), through novel formulas presented
in this paper.

This approach allows one to study the distance between the integrable PDE and any
P�E discretizing it. Suppose, for instance, that the asymptotic expansion we construct reads
ψ = u + O(εα), α > 0, where ψ is a generic long-wave solution of the dNLS (2) and u is
the corresponding solution of (1); then if the DP test is passed at O(εβ), we conclude that
(i) the dynamics according to the NLS equation (1) is well approximated (with an error of
O(εα)) by the dynamics according to its discretization (2), for time scales of O(t−β); (ii) the
dNLS equation is asymptotically integrable up to that order, constructing its infinitely many
approximate symmetries and constants of motion in involution. In contrast, if the DP test is
not passed at that order, the dNLS equation is not integrable and one should expect, at the
corresponding time scale, numerical evidence of nonintegrability and/or chaos.

We have carried the above procedure up to O(ε4) and we have been able to isolate the
constraints on the coefficients of the dNLS equation (2) allowing one to pass the test at that
order, in both scenarios of S- and C-integrability.
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Numerical experiments to test such theoretical findings are presently under investigation;
preliminary results seem to confirm the theoretical predictions contained in this paper [54].

With the same methodology and goals, we are presently investigating families of
discretizations of the Korteweg–de Vries and Burgers equations [55], other two basic integrable
models of natural phenomena. Of course we also plan to investigate discretizations of
integrable PDEs in which also the time variable is discretized.
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Appendix A.

In this appendix we display, for completeness, the long outputs of the DP test, obtained using
the algebraic manipulation program of Mathematica.

The differential polynomial g7 in (37) reads

g7 = i
(
l1u|u|6 + l2|u|4u(3) + l3ūu(3)2

+ l4u
2|u|2ū(3) + l5u|u(3)|2

+ l6ū|u|2u2
x + l7u

2
xū

(3) + l8u|u|2|ux |2 + l9|ux |2u(3) + l10u
3ū2

x

+ l11ūuxu
(3)
x + l12uūxu

(3)
x + l13uuxū

(3)
x + l14|u|4uxx + l15ūuxxu

(3)

+ l16uuxxū
(3) + l17|ux |2uxx + l18ūu2

xx + l19u
2|u|2ūxx + l20uūxxu

(3)

+ l21u
2
xūxx + l22u|uxx |2 + l23|u|2u(3)

xx + l24u
2ū(3)

xx + l25ūuxuxxx

+ l26uūxuxxx + l27uuxūxxx + l28|u|2uxxxx + l29u
2ūxxxx

)
, (A.1)

where

l1 = − 1
18c3, l2 = − 3

2c2, l3 = 2c, l4 = −c2, l5 = 4c,

l6 = 7l10, l7 = 1
2 l11, l8 = 6l10,

l9 = − 1
3 (a1 + a2 + a3 − 5a4 + 7a5 + a6 + a7 − 11a8 + 13a9 + a10),

l10 = − 1
36c2, l11 = −(a1 + a2 + a3 + a4 + a5 − 3a6 + 5a7 − 3(a8 + a9) + 5a10),

l12 = l13, l13 = − 1
3 (a1 + a2 + a3 − 5a4 + 7a5 + a6 + a7 − 11a8 + 13a9 + a10),

l14 = 5l10, l15 = l16, (A.2)

l16 = − 1
3 (2a1 − a2 + 2a3 − a4 − a5 − 4(a6 + a7 + a8 + a9 + a10),

l17 = − 1
36 (5(a1 + a2 + a3 + a4 + a5 + a6 + a7 + a10) − 67a8 + 77a9),

l18 = − 1
18 (a1 + a2 + a3 + a4 + a5 − 8(a6 + a7 + a8 + a9 + a10)),

l19 = 2l10, l20 = − 1
3 (a1 + a2 + a6 + a7 − 5(a3 + a4 + a5 + a8 + a9 + a10)),

l21 = − 1
18 (a1 + a2 + a3 + a4 + a5 + a6 + a7 − 17(a8 + a9) + 19a10),

l22 = − 1
180 (11(a1 + a2 + a3) − 79(a4 + a5) + 11(a6 + a7) − 169(a8 + a9 + a10)),

l23 = − 1
3 (2a1 − a2 + 2a3 − a4 − a5 − 4(a6 + a7 + a8 + a9 + a10)), l24 = 1

2 l20,

l25 = − 1
12 (a1 + a2 + a3 + a4 + a5 + 9a7 − 7(a6 + a8 + a9) + 9a10),

l26 = − 1
60 (3(a1 + a2 + a3 + a10) − 17a4 + 23a5 + 3a6 + 3a7 − 37a8 + 43a9),

l27 = − 1
45 (a1 + a2 + a3 − 14a4 + 16a5 + a6 + a7 − 29a8 + 31a9 + a10),
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l28 = − 1
60 (2a1 − 3a2 + 2a3 − 3a4 − 3a5 − 8(a6 + a7 + a8 + a9 + a10)),

l29 = − 1
180 (a1 + a2 + a6 + a7 − 14(a3 + a4 + a5 + a8 + a9 + a10)). (A.3)

The solution f
(3)
4 ∈ P7(1) of M̂4f

(3)
2 = M̂2f

(3)
4 , where f

(3)
2 = g5 is given in (32), (33), exists

unique and reads

f
(3)
4 = i

(
α1u|u|6 + α2uxx |u|4 + α3ūxxu

2|u|2 + α4u
2
x |u|2ū + α5|ux |2|u|2u

+ α6ū
2
xu

3 + α7uxxxx |u|2 + α8ūxxxxu
2 + α9uxxxuxū + α10ūxxxuxu + α11uxxxūxu

+ α12u
2
xxū + α13|uxx |2u + α14uxx |ux |2 + α15ūxxux

2
)
,

(A.4)

where

α1 = c2

3
(2c2 − c3 + c4 + 3c5), α2 = c

6
(4c2 − 2c3 + 6c4 + 5c5),

α3 = c

12
(2c2 − c3 + 3c4 + 10c5), α4 = c

24
(40c2 − 11c3 + 25c4 + 20c5),

α5 = c

12
(8c2 + 5c3 + 7c4 + 16c5), α6 = c

24
(4c2 + c3 + c4 + 8c5),

α7 = c4

6
, α8 = c5

12
, α9 = 1

12
(4c2 + 3c4), α10 = 1

12
(c3 + 2c5),

α11 = 1

12
(2c3 + c4), α12 = 1

12
(3c2 + 2c4), α13 = 1

12
(c3 + c4 + 4c5),

α14 = 1

12
(2c2 + 5c3 + c4), α15 = 1

12
(c2 + c3 + 3c5),

(A.5)

iff the following constraint is satisfied:

2c1 − c(2c2 − c3 + c4 + 4c5) = 0 (A.6)

on the coefficients cj’s defined in (33). This constraint is equivalent to (45).
f

(5)
2 = g7 − f

(3)
4 consequently reads, from (A.1) and (A.4),

f
(5)
2 = i

(
d1u|u|6 + d2|u|4u(3) + d3ūu(3)2

+ d4u
2|u|2ū(3) + d5u|u(3)|2

+ d6ū|u|2u2
x + d7u

2
xū

(3) + d8u|u|2|ux |2 + d9|ux |2u(3) + d10u
3ū2

x + d11ūuxu
(3)
x

+ d12uūxu
(3)
x + d13uuxū

(3)
x + d14|u|4uxx + d15ūuxxu

(3) + d16uuxxū
(3)

+ d17|ux |2uxx + d18ūu2
xx + d19u

2|u|2ūxx + d20uūxxu
(3) + d21u

2
xūxx + d22u|uxx |2

+ d23|u|2u(3)
xx + d24u

2ū(3)
xx + d25ūuxuxxx + d26uūxuxxx + d27uuxūxxx

+ d28|u|2uxxxx + d29u
2ūxxxx

)
,

(A.7)

where

d1 = c2

9
(5a1 + 2a2 − 4a3 − a4 − 13a5 − 13a6 + 11a7 − 10a8 − 34a9 + 2a10),

d2 = −3

2
c2, d3 = 2c, d4 = −c2, d5 = 4c,

d6 = c

72
(95a1 + 20a2 + 35a3 + 26a4 − 106a5 − 295a6 + 185a7 − 223a8 − 487a9

+ 125a10),

d7 = −1

2
(a1 + a2 + a3 + a4 + a5 − 3a6 + 5a7 − 3(a8 + a9) + 5a10),

(A.8)
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d8 = c

12
(11a1 + 4a2 − 5a3 − 22a4 − 2a5 − 19a6 + 13a7 − 55a8 − 15a9 − 3a10),

d9 = d13, d10 = c

72
(11a1 + 8a2 − 13a3 − 22a4 − 10a5 − 19a6 + 29a7 − 55a8

− 31a9 + 5a10), d11 = 2d7, d12 = d13,

d13 = −1

3
(a1 + a2 + a3 − 5a4 + 7a5 + a6 + a7 − 11a8 + 13a9 + a10),

d14 = c

18
(16a1 − 2a2 + a3 − 5a4 − 29a5 − 44a6 + 4a7 − 35a8 − 83a9 − 11a10),

d15 = d16, d16 = −1

3
(2a1 − a2 + 2a3 − a4 − a5 − 4(a6 + a7 + a8 + a9 + a10)),

d17 = 1

36
(5a1 + 2a2 + 5a3 − 28a4 + 32a5 − 13a6 + 11a7 − a8 − 25a9 + 11a10),

d18 = 1

72
(13a1 + a2 + 13a3 + a4 + a5 − 11a6 + 61a7 − 11(a8 + a9) + 61a10),

d19 = c

36
(11a1 + 2a2 − 19a3 − 22a4 − 34a5 − 19a6 + 5a7 − 37a8 − 61a9 − 25a10),

d20 = −1

3
(a1 + a2 + a6 + a7 − 5(a3 + a4 + a5 + a8 + a9 + a10)),

d21 = 1

36
(2a1 + 2a2 − 7a3 − 13a4 − a5 − 4a6 + 8a7 + 11a8 + 35a9 − 37a10),

d22 = 1

180
(14a1 − a2 − 46a3 − a4 + 59a5 − 16a6 − 16a7 + 44a8 + 164a9

+ 104a10),

d23 = −1

3
(2a1 − a2 + 2a3 − a4 − a5 − 4(a6 + a7 + a8 + a9 + a10)), d24 = 1

2
d20,

d25 = 1

4
(a1 + a3 − a6 − a7 − a8 − a9 − a10),

d26 = 1

180
(11a1 − 4a2 + 11a3 − 4a4 − 4a5 − 19(a6 + a7 + a8 + a9 + a10)),

d27 = 1

30
(a1 + a2 − 4a3 + a4 − 9a5 + a6 + a7 + 6a8 − 14a9 − 4a10),

d28 = 1

180
(14a1 − a2 + 14a3 − a4 − a5 − 16(a6 + a7 + a8 + a9 + a10)),

d29 = c

120
.

(A.9)

The unique solution f
(3)
6 = M̂6u

(3) ∈ P9(1) of equation M̂6f
(3)
2 = M̂2f

(3)
6 reads

f
(3)
6 = i

(
β1|u|8u + β2uxx |u|6 + β3ūxx |u|4u2 + β4u

2
x |u|4ū + β5|ux |2|u|4u

+ β6ū
2
xu

3|u|2 + β7uxxxx |u|4 + β8uxxxux |u|2ū + β9uxxxūx |u|2u + β10u
2
xx |u|2ū

+ β11|uxx |2|u|2u + β12ūxxxux |u|2u + β13ūxxx ūxu
3 + β14uxxu

2
xū

2

+ β15uxx |ux |2|u|2 + β16uxxū
2
xu

2 + β17u
3
xūx ū + β18|ux |4u + β19(ūxx)

2u3

+ β20ūxx |ux |2u2 + β21ūxxu
2
x |u|2 + β22uxxxxxx |u|2 + β23ūxxxxxxu

2
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+ β24uxxxxx |u|2 + β25ūxxxxxuux + β26uxxxx |ux |2 + β27uxxxxuxxū

+ β28uxxxxūxxu + β29ūxxxxu
2
x + β30ūxxxxuxxu + β31u

2
xxxū + β32uxxxuxxūx

+ β33uxxxūxxux + β34|uxxx |2u + β35|uxx |2uxx + β36uxxxxxuxū

+ β37uxxūxxxux + β38ūxxxx |u|2u2
)
, (A.10)

where

β1 = c3

48
(6c2 − 3c3 + 3c4 + 8c5), β2 = c2

36
(10c2 − 5c3 + 10c4 + 12c5),

β3 = c2

36
(4c2 − 2c3 + 4c4 + 9c5), β4 = c2

18
(13c2 − 5c3 + 9c4 + 10c5),

β5 = c2

36
(18c2 − 3c3 + 14c4 + 28c5), β6 = c2

36
(5c2 − c3 + 3c4 + 8c5),

β7 = c

180
(6c2 − 3c3 + 15c4 + 7c5), β8 = c

360
(108c2 − 29c3 + 126c4 + 56c5),

β9 = c

360
(36c2 + 7c3 + 66c4 + 52c5), β10 = c

720
(152c2 − 41c3 + 169c4 + 84c5),

β11 = c

360
(44c2 − 7c3 + 79c4 + 118c5), β12 = c

360
(16c2 + 7c3 + 26c4 + 62c5),

β13 = c

360
(8c2 + c3 + 6c4 + 26c5), β14 = c

72
(33c2 − 7c3 + 21c4 + 14c5),

β15 = c

360
(278c2 + 11c3 + 276c4 + 236c5), β16 = c

360
(39c2 + 8c3 + 33c4 + 68c5),

(A.11)

β17 = c

72
(22c2 − c3 + 13c4 + 16c5), β18 = c

720
(158c2 + 31c3 + 101c4 + 176c5),

β19 = c

720
(12c2 − c3 + 9c4 + 44c5), β20 = c

120
(16c2 + 7c3 + 12c4 + 42c5),

β21 = c

360
(114c2 − 12c3 + 103c4 + 158c5), β22 = c4

120
, β23 = c5

360
,

β24 = 1

240
(2c3 + 3c4), β25 = 1

360
(c3 + 4c5), β26 = 1

720
(18c2 + 21c3 + 25c4),

β27 = 1

360
(15c2 + 13c4), β28 = 1

720
(9c3 + 11c4 + 12c5),

β29 = 1

360
(c2 + 2c3 + 10c5), β30 = 1

360
(2c3 + c4 + 11c5),

β31 = 1

144
(4c2 + 3c4), β32 = 1

720
(50c2 + 35c3 + 34c4),

β33 = 1

360
(11c2 + 17c3 + 10c4 + 15c5), β34 = 1

720
(11c3 + 4c4 + 18c5),

β35 = 1

720
(20c2 + 25c3 + 11c4 + 20c5),

β36 = 1

240
(4c2 + 5c4), β37 = 1

720
(8c2 + 31c3 + 4c4 + 50c5),

β38 = c

360
(2c2 − c3 + 5c4 + 14c5), (A.12)
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and no additional constraint on the coefficients cj’s appears. The unique solution f
(5)
4 =

M̂4u
(5) ∈ P9(3) of equation M̂4f

(5)
2 = M̂2f

(5)
4 reads

f
(5)
4 = i

(
δ1u|u|8 + δ2uxx |u|6 + δ3ūxxu

2|u|4 + δ4u
2
xū|u|4 + δ5|ux |2u|u|4

+ δ6ū
2
x |u|2u3 + δ7uxxxx |u|4 + δ8uxxxux |u|2ū + δ9uxxxūx |u|2u + δ10u

2
xx |u|2ū

+ δ11|uxx |2|u|2u + δ12ūxxxux |u|2u + δ13ūxxx ūxu
3 + δ14uxxu

2
xū

2

+ δ15uxx |ux |2|u|2 + δ16uxxū
2
xu

2 + δ17u
3
xūx ū + δ18|ux |4u + δ19ū

2
xxu

3

+ δ20ūxx |ux |2u2 + δ21ūxxu
2
x |u|2 + δ22uxxxxxx |u|2 + δ23ūxxxxxxu

2

+ δ24uxxxxx ūxu + δ25ūxxxxxuxu + δ26uxxxx |ux |2 + δ27uxxxxuxxū

+ δ28uxxxxūxxu + δ29ūxxxxu
2
x + δ30ūxxxxuxxu + δ31u

2
xxxū

+ δ32uxxxuxxūx + δ33uxxxūxxux + δ34|uxxx |2u + δ35uxx |uxx |2

+ δ36uxxxxxuxū + δ37uxxūxxxux + δ38u
2|u|2ūxxxx + γ1u

(3)
xxxx |u|2 + γ2u

(3)
xxxuxū

+ γ3u
(3)
xxx ūxu + γ4u

(3)
xx uxxū + γ5u

(3)
xx |ux |2 + γ6u

(3)
xx uūxx + γ7u

(3)
x uxxxū

+ γ8u
(3)
x uxxūx + γ9u

(3)
x uxūxx + γ10u

(3)
x uūxxx + γ11u

(3)uxxxxū + γ12u
(3)uxxxūx

+ γ13u
(3)|uxx |2 + γ14u

(3)uxūxxx + γ15u
(3)uūxxxx + γ16ū

(3)
xxxxu

2 + γ17ū
(3)
xxxuxu

+ γ18ū
(3)
xx uxxu + γ19ū

(3)
xx u2

x + γ20ū
(3)
x uxxxu + γ21ū

(3)
x uxxux + γ22ū

(3)uxxxxu

+ γ23ū
(3)uxxxux + γ24ū

(3)u2
xx + γ25u

(3)
xx |u|4 + γ26u

(3)
x ux |u|2ū + γ27u

(3)
x ūx |u|2u

+ γ28u
(3)uxx |u|2ū + γ29u

(3)u2
xū

2 + γ30u
(3)|ux |2|u|2 + γ31u

(3)ū2
xu

2

+ γ32u
(3)ūxx |u|2u + γ33ū

(3)
xx |u|2u2 + γ34ū

(3)
x ux |u|2u + γ35ū

(3)
x ūxu

3

+ γ36ū
(3)uxx |u|2u + γ37ū

(3)u2
x |u|2 + γ38ū

(3)|ux |2u2 + γ39ū
(3)ūxxu

3 + γ40u
(3)|u|6

+ γ41ū
(3)|u|4u2 + σ1u

(3)
xx u(3)ū + σ2u

(3)
x

2
ū + σ3u

(3)
x u(3)ūx + σ4u

(3)2
ūxx

+ σ5u
(3)
xx ū(3)u + σ6|u(3)

x |2u + σ7u
(3)
x ū(3)ux + σ8u

(3)ū(3)
xx u + σ9u

(3)ū(3)
x ux

+ σ10|u(3)|2uxx + σ11(u
(3))2|u|2ū + σ12|ū(3)|2|u|2u + σ13(ū

(3))2u3
)
,

(A.13)

where

δ1 = c

576

(
336d1 + 4(6c2 − 3c3 + 2c4 + 10c5)d2 + 6c5(2c2 − c3 + 2c4 + 4c5)d3

+ 4(6c2 − 3c3 + 3c4 + 2c5)d4 +
( − 4c2

4 + 2c2c5 − c3c5 + c4c5 − 2c2
5

)
d5

+ c(2(14c2 − 5c3 + 9c4 + 28c5)d11 − 2(10c2 − 3c3 + 7c4 + 8c5)d12 − 4(6c2

− 3c3 + c4 + 16c5)d13 + 16d14 + 2(18c2 − 7c3 + 11c4 + 30c5)d15 − 2(6c2

− 3c3 + 3c4 + 14c5)d16 − 48d19 − 4(6c2 − 3c3 + 3c4 + 8c5)d20 + 4(−4c2 + c3

+ 2c4 + 15c5)d23 + 4(−6c2 + 5c3 + c4 − 6c5)d24 + 32d6 − 16d8 + 4(2c2 − c3

+ c4 + 4c5)d9) + 8c2(−2d17 + 4d18 + 2d22 + 7d25 − 7d26 − 5d28 + 16d29)
)
,

δ2 = 1

144

(
96d1 + 10c4d2 + 4c4c5d3 − 6c5d4 − 2c2

4d5 + c(2(4c2 − c3 + 6c4

+ 8c5)d11 − 2(2c2 + 5c4)d12 − 2(6c2 − 3c3 + c4 + 14c5)d13 + 104d14 + (18c2

− 7c3 + 11c4 + 24c5)d15 + 3(−2c2 + c3 − c4 − 4c5)d16 − 24d19 + (34c2 − 19c3
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+ 31c4 + 80c5)d23 + 2(−6c2 + 5c3 − 5c4 − 10c5)d24 + 16d6 − 8d8 + 2(2c2

− c3 + c4 + 4c5)d9) + 4c2(−2d17 + 4d18 + 2d22 + 13d25 − 13d26 + d28 + 4d29)
)
,

δ3 = 1

48
(12d1 + 2c5d2 + 2c4d4 + c(2c5d11 − 2c5d12 + 8d14 + 24d19 + (2c2

− c3 + c4 + 4c5)d20 + 2(2c2 − c3 + c4 + 5c5)d23 + 5(2c2 − c3 + c4)d24)

+ 8c2(d25 − d26 + d28 − 2d29)),

δ4 = 1

144

(
216d1 + 2(3c2 + 6c4 − 2c5)d2 + 2

(
2c3c4 + 2c2c5 + c3c5 + c4c5

− 2c2
5

)
d3 − 24c5d4 − (

6c2
4 − 3c3c5 + c4c5 + 2c2

5

)
d5 + c(−24d10 + (52c2 − 19c3

+ 9c4 + 54c5)d11 + 2(−7c2 + 3c3 − 8c4 + 9c5)d12 + 2(−10c2 + 4c3 − 5c4

− 22c5)d13 + 28d14 + 2(33c2 − 4c3 + 5c4 + 16c5)d15 + 2(−22c2 + 12c3 − 18c4

− 19c5)d16 − 102d19 + (4c2 − 10c3 − 6c4 + 7c5)d20 + (154c2 − 58c3 + 121c4

+ 199c5)d23 + 3(−22c2 + 18c3 − 3c4 − 22c5)d24 + 132d6 + (10c2 − 5c3 + 5c4

+ 4c5)d7 − 16d8 + 2(6c2 − 3c3 + 3c4 + 13c5)d9) + 2c2(−42d17 + 118d18 − 8d21

+ 17d22 + 54d25 − 37d26 + 7d27 + 193d28 + 160d29)
)
,

δ5 = 1

48

(
48d1 + 2(3c3 − 2c4 + 4c5)d2 + 2c4c5d3 + 2(−c3 − 6c4 + 4c5)d4

+ 2
(
c2

4 − c2
5

)
d5 + c(−8d10 + 4(c2 + 4c5)d11 + (10c2 − 7c3 + 11c4 + 8c5)d12

+ (6c2 − 3c3 + 3c4 + 4c5)d13 + 24d14 − 4(3c2 − c3 + c4 + c5)d15 + 4(4c2

− 2c3 + 3c4 + 3c5)d16 + 16d19 + 4c5d20 + 2(28c2 − 15c3 + 6c4 + 42c5)d23

+ 4(−4c2 + c3 + 5c4 − 17c5)d24 + 8d6 + 32d8 + (−2c2 + c3 − c4 − 4c5)d9)

+ 4c2(2d17 + 4d18 − 6d22 + 3d25 + d26 − 4d27 − 13d28 − 4d29)
)
,

δ6 = 1

48

(
12d1 + 2c2

5d3 + 2(c2 − c4)d4 − c4c5d5 + c(20d10 + 2(2c2

− c3 + 4c5)d12 − 4d14 + 2(c2 + 2c5)d15 − 2(c4 + c5)d16 + 8d19 + (8c2

− 2c3 + 7c4 + 8c5)d23 + 2(10c2 − 5c3 + 11c4 + 5c5)d24 + 4d6 + 4d8)

+ 2c2(−2d17 + 12d18 − 2d22 + d25 + 3d26 − 4d27 + 9d28 + 12d29)
)
,

δ7 = 1

24
(4d14 + 2c4d23 − c5d24 + 2c(d25 − d26 + 9d28 − 2d29)),

δ8 = 1

24
(c4d11 − c5d13 + 8d14 + 2c2d15 + (6c2 + 7c4)d23 − 2c5d24

+ 8d6 + 2c(−2d17 + 8d18 + 12d25 − 2d26 − d27 + 27d28 − 4d29)),

δ9 = 1

24
(c4d12 + 4d14 + 2c5d15 − 2c4d16 + (3c3 + 4c4)d23 − c3d24 + 4d8

+ 2c(4d18 − 2d22 + d25 + 9d26 − d27 + 18d28)), (A.14)

δ10 = 1

24
(2c4d11 − 2c5d13 + 8d14 + 3c4d15 − c5d16 + 2c2d23 + c4d23 + 6d6

+ 2c(11d18 − d22 + 2d25 − 2d27 + 6d28)),

δ11 = 1

24
(2c5d11 − 2c4d13 + 4d14 + c5d15 + c4d16 + 12d19 + c4d20 + (4c3 + c4

+ 6c5)d23 + (−c4 + 2c5)d24 + 2d8 + 4c(d18 + 4d22 + d25 − d26 + 13d28 − 2d29)),

21
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δ12 = 1

24
(c5d11 + c4d13 + 6d19 + c3d23 + 10c5d23 + c3d24 − 4c4d24 + 2d8

+ 2c(d25 + d26 + 7d27 + 8d28 + 8d29)),

δ13 = 1

24
(4d10 + c5d12 + 2d19 + 2c2d24 + 2c4d24 + 2c(d25 + d26 + d27 + 8d29)),

δ14 = 1

48
(4(3c2 + c4)d11 + 8d14 + 2(2c2 − c4)d15 − 2c5d16 + (12c2 + 7c4)d23

+ 2c5d24 + 24d6 − 6c5d7 + 2c(−4d17 + 20d18 − 6d21 − 2d22 + 37d25 − 2d26

+ 37d28 + 4d29)),

δ15 = 1

24
((5c3 + c4)d11 + (2c2 + c4)d12 + (−3c3 + 2c5)d13 + 8d14 + (c3

+ 4c5)d15 + (c3 − 4c4)d16 + (8c2 + 11c3 + 6c4 − 4c5)d23 + 4(−c3 + c4

− 2c5)d24 + 8d6 − 4c4d7 + 20d8 + c4d9 + 4c(4d17 + 8d18 + 11d25 + 5d26 − 7d27

+ 34d28 − 8d29)),

δ16 = 1

48
(12d10 − 2c5d11 + 2(2c3 + c4 + 3c5)d12 − 2(2c2 + c4)d13

+ 4d14 + 2c2d16 + 6d19 − 3c5d20 − (2c3 + 7c5)d23 + (4c2 − 2c3 + c4

+ 4c5)d24 + 8d8 + 2c5d9 + 2c(2d17 + 6d18 + 2d21 + d22 − 3d25 + 26d26

− 11d27 − 14d28 + 4d29)),

δ17 = 1

24
((c2 + 3c3)d11 − 2c3d13 + 2(c2 + c3 − c5)d23 + 2c4d24 + 4d6

+ (c3 − 2c4)d7 + 6d8 + c2d9 + 4c(d17 + 2d21 + 7d25 − 4d27 + 6d28)),

δ18 = 1

24
(6d10 − 2c5d11 + (c2 + 3c3 + 6c5)d12 − (3c2 − c3 + 2c4)d13

+ 6d19 − 3c5d20 − (2c3 + 7c5)d23 + (2c2 − 6c3 + c4)d24 + 2d6 + c2d7

+ 8d8 + c3d9 + 2c5d9 + 2c(4d17 + 6d18 + 2d21 − 3d22 − 3d25 + 20d26 − 5d27

− 14d28 − 20d29)),

δ19 = 1

24
(2d10 + 2d19 + c5d20 + (2c2 + c4)d24 + 2c(d18 + d22 + 6d29)),

δ20 = 1

24
(24d10 + (c3 + 2c5)d12 + 2c2d13 + c4d13 + 12d19 + (c3

+ 3c5)d20 − 3c5d23 − (14c2 − 3c3 + 7c4)d24 + 4d8 + c5d9 + 2c(2d17

− 6d18 + 2d21 + 7d22 − 3d25 + 6d26 + 9d27 − 36d29)),

δ21 = 1

24
((c3 + 6c5)d11 + (c3 − 3c4)d13 + 18d19 + c2d20 + (c2 + 6c3 + 10c5)d23

− 4(c3 + c4)d24 + 4d6 + c4d7 + 4d8 + 4c(4d21 + d22 + 5d25 − 2d26 + 3d27 + 20d28

− 16d29)),

δ22 = d28

6
, δ23 = d29

12
, δ24 = 1

12
(2d26 + d28), δ25 = 1

12
(d27 + 2d29),

δ26 = 1

12
(2d17 + d25 + 3d26 + d28), δ27 = 1

12
(4d18 + 3d25 + 2d28), (A.15)
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δ28 = 1

12
(2d22 + d26 + d28), δ29 = 1

12
(d21 + d27 + 3d29),

δ30 = 1

12
(d22 + d27 + 4d29), δ31 = 1

12
(3d18 + 2d25),

δ32 = 1

12
(5d17 + 2d18 + d25 + 2d26), δ33 = 1

12
(d17 + 4d21 + 3d22 + d25 + d26),

δ34 = 1

12
(d22 + d26 + 2d27), δ35 = 1

12
(d17 + d18 + 3d21 + 2d22),

δ36 = 1

12
(2d25 + 3d28), δ37 = 1

12
(d17 + 2d21 + d22 + 5d27),

δ38 = 1

24
(2d19 + c5d23 + c4d24 + 4c(d28 + 3d29)),

γ1 = d23

6
, γ2 = 1

12
(2d11 + 3d23), γ3 = 1

12
(2d12 + d23),

γ4 = 1

12
(3d11 + 2d15 + 2d23), γ5 = 1

12
(d11 + 3d12 + d23 + 2d9),

γ6 = 1

12
(d12 + 2d20 + d23), γ7 = 1

12
(2d11 + 3d15),

γ8 = 1

12
(d11 + 2d12 + d15 + 3d9), γ9 = 1

12
(d11 + d12 + 3d20 + d9),

γ10 = 1

12
(d12 + d20), γ11 = d15

6
, γ12 = 1

12
(d15 + 2d9),

γ13 = 1

12
(d15 + 2d20 + d9), γ14 = 1

12
(d20 + d9), γ15 = d20

12
,

γ16 = d24

12
, γ17 = 1

12
(d13 + 2d24), γ18 = 1

12
(d13 + d16 + 4d24),

γ19 = 1

12
(d13 + 3d24 + d7), γ20 = 1

12
(2d13 + d16), γ21 = 1

12
(5d13 + d16 + 2d7),

γ22 = d16

6
, γ23 = 1

12
(3d16 + 4d7), γ24 = 1

12
(2d16 + 3d7),

γ25 = 1

12
(2d2 + c(d11 − d12 + 9d23 − 2d24)),

γ26 = 1

12

(
6d2 + 2c4d3 − c5d5 + c(11d11 − d12 − d13 + 2d15 − 2d20 + 10d23

− 8d24)
)
,

γ27 = 1

12
(2d2 + 2c5d3 − c4d5 + c(d11 + 7d12 + d13 + 2d15 − 2d16 + 8d23)),

γ28 = 1

24
(8d2 + 6c4d3 − c5d5 + 2c(2d11 − 2d13 + 11d15 − d16 − d20 + 2d23)),

γ29 = 1

24
(6d2 + 2(c2 + c3 − 2c5)d3 − (c3 − c4)d5 + 2c(4d11 − 2d13 + 4d15

− 2d20 + 2d23 + d7 + d9)),

γ30 = 1

24
(8d2 + 2(c3 + 4c5)d3 + (c3 − 4c4)d5 + 4c(d11 + d12 + d13 + 4d15

− 2d16 + 2d20 + 6d23 − 4d24 + 4d9)),

γ31 = 1

24
(2d2 + c2d5 + 2c(2d12 + 2d20 + 2d24 + d7 + d9)),

23
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γ32 = 1

24
(4d2 + 2c5d3 + c4d5 + 2c(d15 + d16 + 7d20 + 2d23 + 2d24)),

γ33 = 1

2
(d4 + 2c(d23 + 3d24)),

γ34 = 1

12
(3d4 + c(d11 + d12 + 7d13 + 4d23 + 4d24)),

γ35 = 1

12
(d4 + c(d11 + d12 + d13 + 4d24)),

γ36 = 1

24
(12d4 + c4d5 + 2c(2d11 − 2d13 + 3d15 + 7d16 − d20 + 6d23 − 2d24)),

γ37 = 1

24
(18d4 + c2d5 + 4c(3d11 − 2d12 + d13 + d16 + 7d23 − 8d24 + 4d7),

γ38 = 1

24
(18d4 + c3d5 + 4c(d7 + d9 − 3d11 + 4d12 + d13 + 2d16 − 3d23 − 10d24)),

γ39 = 1

24
(2d4 + c5d5 + 2c(d15 + d16 + d20 + 2d24)),

γ40 = c

144
(80d2 + 2(6c2 − 3c3 + c4 + 12c5)d3 + 16d4 + (10c2 − 5c3 + 5c4

+ 8c5)d5 + 8c(3d11 − d12 − 2d13 + 3d15 − d16 − 2d20 + 2d23 − 2d24)),

γ41 = c

48
(8d2 + 24d4 + (2c2 − c3 + c4 + 4c5)d5 + 8c(d11 − d12 + d23 − 2d24)),

σ1 = d3

3
, σ2 = d3

4
, σ3 = d3

6
, σ4 = d3

12
, σ5 = σ10 = d5

6
, σ6 = d5

12
, σ7 = d5

4
,

σ8 = σ9 = d5

12
, σ11 = c

12
(7d3 + d5), σ12 = c

6
(d3 + 4d5), σ13 = c

12
(d3 + d5), (A.16)

iff the following three sets of constraints are satisfied:

d15 − d16 = d5 − 2d3 = c4d3 − 2cd23 = −d12 + d13 − d15 + d20 + d23 − 2d24

= −d9 + d11 + d13 − 2d7 = (2c2 − c3 + c4)d3 − 2(d11 − d13 + d16 − d20 + 2d24)c

= (c2 − c3 + c4 + c5)d3 + 2(d13 − d16 − d24 − d7)c = 0,

(A.17)

(2c2 − c3 + c4 + 2c5)d3 − 2d4 + 4d24c

= −4d2 + (6c2 − 3c3 + 3c4 + 8c5)d3 + 8d24c = 0, (A.18)

− 4d10 + 2c5d13 − 2c5d16 + 2d19 + c5d20 + c5d23 + (2c2 − c4 − 4c5)d24

+ 2c(2d18 − d22 − d25 + 2d26 − d27 − 2d28 + 4d29) = 0,

−4d14 − 2c4d11 + 2(c2 − c4 + c5)d16 + (4c2 + 3c4)d23 + 2c5d24 + 2c(−2d17

+ 4d18 + 2d22 + d25 − d26 + 13d28 + 4d29) = 0,

−2d8 − (c4 − 2c5)d7 − 2(c4 − c5)d11 + (2c2 + c3 + 2c4 + c5)d13 − (c3 + 3c4)d16

+ 6d19 + (−c3 + 2c4 + c5)d20 + (5c2 − c3 + 3c4)d23 − (4c2 + c3 + 6c4)d24

+ 2c(2d17 − 2d18 − 4d21 − 7d22 − d25 + 2d26 + 11d27 + 10d28 − 20d29) = 0,

24
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−4d6 + (2c2 + 2c3 − c4 − 4c5)d7 − 12d10 + (c3 + 2c5)d11 − (c2 − 4c4 + 9c5)d13

− 4d14 + (3c2 − 5c5)d16 + 12d19 − (2c2 + c3 + 2c4 − 4c5)d20 + (c2 + 4c3 + c4

− c5)d23 + (6c2 − 2c3 + 3c4 − 12c5)d24 + (−8d17 + 20d18 + 4d21 − 14d22 + 10d25

+ 4d26 + 10d27 + 44d28 − 16d29) = 0,

−24d1 + 6
(
c2

5 − c4c5
)
d3 + 2(6c2 − c4)d4 + (2(2c2 + 2c3 − c4 + 4c5)d7 − 4d8

− 52d10 + 2(−4c2 + c3 − c4 + 2c5)d11 + 2(c2 + c3 − 6c4 + 6c5)d13 − 16d14 + 2(5c2

− c3 + c4 − c5)d16 + 62d19 + (−4c2 + 2c3 − 12c4 + 5c5)d20 + (2c2 + 12c3 + 4c4

+ 13c5)d23 + (6c2 − 12c3 + 5c4)d24)c + 2c2(−16d17 + 50d18 + 4d21 − 13d22 + d25

+ 20d26 + 3d27 + 52d28 + 4d29) = 0. (A.19)

The first set of constraints (A.17) is automatically satisfied by the parametrizations (33) and
(A.8), while the second set of two constraints (A.18) is satisfied by the parametrizations
(33) and (A.8) and by the O(ε2) constraint (45). The remaining five constraints (A.19) are
equivalent to the five quadratic constraints (53), (54)–(58) in the S-integrability scenario in
which (48) holds, and to the linear constraints (11) in the C-integrability scenario in which
c = 0 (the last constraint is automatically satisfied by the condition c = 0 and, in the remaining
constraints, the quadrics degenerate into the hyperplanes described by equations (11)).
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